Automated Image Annotation for Semantic Indexing and Retrieval of Medical Images
نویسندگان
چکیده
Medical image retrieval to search for clinically relevant and visually similar images depicting suspecious lesions have been attracting research interest. Content-based image retrieval (CBIR) is an important alternate and complement to traditional text-based retrieval using keywords. We have implemented CBIR system based on effective use of texture information within the images obtained by statistical cooccurrence matrix method. Also, the method is improved by bridging the semantic gap between low-level visual features and the high-level semantic concepts using automated image annotations. In this paper, we have proposed a classification-based multi-class multi-label semantic model and the corresponding learning procedure to address the problem of automatic image annotation using J48 decision tree classifier and show its application to medical image retrieval. Hash structure is used to index images. Eucledian distance measure is used for similarity measurement. Both the methods are compared using precision and recall measures. Semantic indexing is shown to outperform CBIR for MR-T2 axial brain images.
منابع مشابه
Automated Image Annotation for Semantic Indexing and Retrieval of Medical Images
Medical image retrieval to search for clinically relevant and visually similar images depicting suspecious lesions have been attracting research interest. Content-based image retrieval (CBIR) is an important alternate and complement to traditional text-based retrieval using keywords. We have implemented CBIR system based on effective use of texture information within the images obtained by stat...
متن کاملContent Based Radiographic Images Indexing and Retrieval Using Pattern Orientation Histogram
Introduction: Content Based Image Retrieval (CBIR) is a method of image searching and retrieval in a database. In medical applications, CBIR is a tool used by physicians to compare the previous and current medical images associated with patients pathological conditions. As the volume of pictorial information stored in medical image databases is in progress, efficient image indexing and retri...
متن کاملتأملاتی بر نمایه سازی تصاویر: یک تصویر ارزشی برابر با هزار واژه
Purpose: This paper presents various image indexing techniques and discusses their advantages and limitations. Methodology: conducting a review of the literature review, it identifies three main image indexing techniques, namely concept-based image indexing, content-based image indexing and folksonomy. It then describes each technique. Findings: Concept-based image indexing is te...
متن کاملUsing Text Surrounding Method to Enhance Retrieval of Online Images by Google Search Engine
Purpose: the current research aimed to compare the effectiveness of various tags and codes for retrieving images from the Google. Design/methodology: selected images with different characteristics in a registered domain were carefully studied. The exception was that special conceptual features have been apportioned for each group of images separately. In this regard, each group image surr...
متن کاملFuzzy Neighbor Voting for Automatic Image Annotation
With quick development of digital images and the availability of imaging tools, massive amounts of images are created. Therefore, efficient management and suitable retrieval, especially by computers, is one of themost challenging fields in image processing. Automatic image annotation (AIA) or refers to attaching words, keywords or comments to an image or to a selected part of it. In this paper,...
متن کامل